К компактным теплообменным устройствам относится подогреватель воды, эксплуатируемый в котельных разных типов, системах индивидуального, централизованного теплоснабжения и жилищно-коммунальных хозяйствах. Мы предлагаем купить оборудование на выгодных условиях, которые предоставляет наша компания НПО «Новые Технологии» для своих заказчиков.

Специалисты занимаются проектированием, проведением расчетов и изготовлением большого количества струйных теплообменников, выступающих в качестве устройств для подогрева сетевой жидкости. Они характеризуются высоким коэффициентом теплоотдачи, небольшими габаритами и весом благодаря максимальной площади поверхности теплообмена. При этом приборы обладают превосходной мощностью, которая достигается посредством уменьшения интенсивности отложения накоплений. Также оборудование имеет низкое гидравлическое сопротивление, позволяющее оптимизировать расходы на перемещение теплоносителей. Материалы проявляют устойчивость к коррозии, в  том числе в местах вальцовки. Теплообменники являются стойкими к щелочным средам и могут функционировать даже в критических режимах при серьезном загрязнении теплоносителей. Выпускаемые устройства невосприимчивы к гидроударам, повышенному давлению и экстремальным температурным показателям.

Пароводяные струйные аппараты ПСА, разработанные и выпускаемые ООО "НПО "НОВЫЕ ТЕХНОЛОГИИ" - это компактные теплообменники струйного типа.

Пароводяные струйные аппараты ПСА относятся к классу эжекторов (ЭУ) и предназначены для нагрева и перекачки воды или водных растворов при помощи водяного пара.

Для приобретения подогревателя воды  уточните требуемые параметры у наших опытных специалистов, которые предоставят консультации по выбору.

 

Области применения подогревателя воды ПСА:

Струйные аппараты ПСА можно применять в любых технологических схемах, где требуется паром нагреть воду. Конкретная схема включения аппаратов выбирается в каждом случае отдельно. Мы имеем богатый опыт установки ПСА в качестве пароводяных теплообменников в системы отопления, горячего водоснабжения, для подогрева воды перед деаэраторами или ХВО, вместо барботажа паром в баках-аккумуляторах, для утилизации отработанного пара после турбин, аварийной подпитки котлов и во многие другие технологические схемы. Кроме этого, струйные аппараты ПСА позволяют существенно экономить средства предприятий при решении таких задач, как подогрев и охлаждение, гомогенизация и сепарация, сатурация и десорбция (насыщение и удаление газов из жидкости), перекачивание различных сред с помощью энергии пара, смешение химически агрессивных веществ, утилизация тепла и многих других. Помимо теплоэнергетики, струйные технологии применимы в большинстве отраслей промышленности.

Основные принципы интенсификации массообменных процессов, применяемые в ПСА:

Принцип действия ПСА основан на физическом явлении из области гидродинамики двухфазных потоков, суть которого заключается в возникновение скачка уплотнения в двухфазном потоке, при разгоне его до сверхзвуковой скорости и последующего торможения с переходом звукового барьера. Теплообмен в камере смешения ПСА происходит путем непосредственного контакта пара и воды. Поток пара разгоняется до сверхзвуковой скорости при помощи сопла Лаваля, после чего попадает в камеру смешения. Вода в камеру смешения подается через кольцевую диафрагму, соосно паровому потоку, в виде кольцевой струи. При взаимодействии потоков происходит распыление воды высокоскоростной струей пара, в результате чего в камере смешения происходит формирование мелкодисперсного сверхзвукового потока равновесной двухфазной смеси; при этом пар передает воде свой импульс и тепло. Далее полученная смесь тормозится в сверхзвуковом диффузоре, что приводит к возникновению скачка уплотнения в двухфазной смеси, повышению статического давления и полной конденсации пара. В результате на выходе из ПСА формируется поток воды с более высокой температурой, чем на входе, и нагретая вода под давлением подается потребителю. Статическое давление выходного потока воды при некоторых условиях может превышать давления обоих входных потоков. Более того, благодаря образованию в камере смешения конденсационного вакуума, ПСА могут работать при давлении пара меньшем, чем давление воды на входе.

Подогреватель водыПароструйный аппарат 

фото установленного на АО "НМЖК" (г.Нижний Новгород) пароводянного струйного аппарата ПСА-04.

Давление воды 1 атм. Давление пара 0,01 атм. Температура воды 3°С. Температура воздуха -19°С

Горячая вода сливается под уровень воды в накопительный бак.

Преимущества пароcтруйных аппаратов ПСА:

  • небольшие, по сравнению с традиционным теплообменным оборудованием, массогабаритные характеристики;
  • сокращение расхода потребляемого пара для нагрева воды на 5 – 20 %;
  • экономия электроэнергии потребляемой насосами на 30 – 90 %, т.к. ПСА не имеют гидравлического сопротивления;
  • долговечность и надежность в работе, простота техобслуживания и ремонта;
  • возможность работы ПСА на химически неподготовленной воде;
  • ПСА изготавливаются из нержавеющей стали, срок службы их 25 лет;
  • окупаемость ПСА происходит в течение первого отопительного периода;
  • расчет под конкретные параметры системы и поставка в кратчайшие сроки - (14-45 дней);

Описание работы пароводяных струйных аппаратов ПСА:

Устройство функционирует следующим образом: активная среда (пар) по трубопроводу, присоединенному к фланцу, поступает в сопло, в котором в процессе расширения достигает скорости течения близкой к скорости звука, либо превосходящей ее. Пассивная среда (вода) подводится к фланцу, и далее, проходя через кольцевой зазор между кромкой сопла и трубы, подается в камеру смешения. В камере смешения происходит полный распыл кольцевой струи воды высокоскоростным потоком пара. Образуется тонкая водяная пыль с размером частиц около 1 мкм. Площадь соприкосновения потоков пара и воды существенно возрастает. Благодаря этому пар практически мгновенно конденсируется. В результате конденсации пара статическое давление в потоке уменьшается до давления насыщения при температуре смеси (в камере смешения образуется вакуумная зона). Кроме того, скорость звука в полученной равновесной мелкодисперсной двухфазной смеси также сильно снижается и становится меньше, чем скорость движения самой смеси. То есть, режим движения смеси становится сверхзвуковым. В процессе истечения сверхзвуковой двухфазной смеси через горловину камеры смешения в смеси возникает прямой скачок уплотнения. Прямой скачок позволяет преобразовать энергию скоростного напора потока в энергию статического давления. В результате, за скачком уплотнения статическое давление в потоке существенно возрастает и становится значительно больше давления насыщения при температуре смеси. Это приводит к полной и окончательной конденсации пара. Режим сверхзвукового двухфазного течения смеси после скачка уплотнения переходит в режим дозвукового однофазного течения. На выходе устройства формируется сплошной поток нагретой воды, имеющий более высокую температуру и давление по отношению к исходному потоку воды.

Особенности конструкции подогревателя воды ПСА

Разработанный широкий модельный ряд пароводяных струйных аппаратов ПСА имеет регулируемые модификации ПСА-Р, позволяющие плавно и точно регулировать тепловую мощность систем отопления в более широком диапазоне нагрузок. Применение регулируемых аппаратов ПСА-Р позволяет обходиться меньшим количеством струйных аппаратов для заданной нагрузки, что существенно снижает затраты на приобретение струйных аппаратов, а также снижает затраты на приобретение арматуры и монтаж трубопроводов для обвязки аппаратов, снижая при этом и площади для монтажа.

В конструкции ПСА-Р используется подвижное паровое сопло при неподвижном центральном теле, позволяющее при его перемещении одновременно изменять критическое сечение парового сопла и сечение кольцевой диафрагмы подачи воды. При этом обеспечивается поддержание оптимального значения коэффициента инжекции, (соотношения массовых расходов пара и воды), т.е. при уменьшении массового расхода пара одновременно уменьшать расход воды.

Производительность (или мощность) аппарата регулируется ручным приводом на его корпусе (модель ПСА-Р) либо электроприводом (модель ПСА-РЭ). Использование модификаций ПСА-Р по сравнению с обычными струйными аппаратами позволяет регулировать тепловую мощность систем отопления гораздо эффективнее и точнее, чем просто изменениями давления пара и количества работающих аппаратов, в существенно более широком диапазоне нагрузок, и при этом не допускать перетопов и недогревов. В сравнении с аналогами, которые не обладают возможностью изменения тепловой мощности, применение ПСА-Р дает 10-20% дополнительной экономии.

Для заказчиков, в котельных которых пар имеет крайне низкие параметры, НПО «НОВЫЕ ТЕХНОЛОГИИ» сможет предложить из модельного ряда ПСА модификацию с двойным подводом пара на ПСА-II, устойчиво работающую при давлении пара ниже 0,7 кгс/см².

ПСА изготавливаются только из высококачественной нержавеющей стали; они надёжны, компактны и максимально эффективны при минимальных эксплуатационных затратах. Средний срок окупаемости пароводяных струйных аппаратов - всего один отопительный сезон, а в течение срока службы ПСА окупаются 20-30 раз!

Основные физические параметры пароcтруйных аппаратов ПСА

Располагаемое давление воды на входе в ПСА, кгс/см², не менее

0,2

0,3

0,5

1,0

1,5

2,3

3,3

4,5

Располагаемое давление пара, кгс/см², не менее

0,4

0,6

0,8

1,6

2,5

3,9

5,6

7,6

Температура воды на выходе из ПСА, Сº, максимальная 

80

90

100

110

120

130

140

150

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ АППАРАТОВ ПСА

ТИПОРАЗМЕР

Ду, мм

Производительность, т/ч

Расход пара, т/ч

Мощность, Гкал/ч

Длина, мм, не более

Наружный диаметр, мм

Масса, кг, не более

ПСА-01

25

1-2

0,03-0,24

0,03-0,16

350

105

6

ПСА-02

32

2-4

0,07-0,48

0,05-0,32

400

115

12

ПСА-03

40

4-8

0,15-0,96

0,1-0,64

500

135

22

ПСА-04

50

8-15

0,3-1,94

0,2-1,28

650

145

35

ПСА-05

65

15-30

0,61-3,64

0,4-2,4

850

160

50

ПСА-06

80

25-50

0,96-6,06

0,63-4,0

1000

180

70

ПСА-07

100

50-100

1,89-12,1

1,25-8,0

1200

215

90

ПСА-08

125

90-180

3,41-21,8

2,25-14,4

1400

245

120

ПСА-09

150

150-300

5,68-36,3

3,75-24,0

1600

280

150

ПСА-10

200

250-500

9,7-60,6

6,25-40

1850 

310

210

Примечания:

1. В графе «мощность» указаны не диапазоны регулирования, а диапазоны мощностей, в которые попадают аппараты данного типоразмера. Диапазон регулирования ПСА составляет 20-120 % от его номинальной мощности.

 2. В графе «производительность» приведено количество воды, проходящее непосредственно через аппарат, а не производительность всей системы. Например, при температурном режиме 95/70 Сº через ПСА требуется нагревать лишь 40-50 % воды системы; оставшаяся часть воды идет через подмес.

3. Любой требуемый температурный режим системы можно получить с помощью подмеса.

Узнать больше о технических особенностях, областях применения, специфике использования и о многочисленных преимуществах Пароводяных Струйных Аппаратов ПСА Вы сможете  непосредственно связавшись с компанией «НПО «НОВЫЕ ТЕХНОЛОГИИ» – мы с удовольствием ответим на все Ваши вопросы!

СХЕМЫ  ПОСТРОЕНИЯ  СИСТЕМ  ОТОПЛЕНИЯ И ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ ПРИ ИСПОЛЬЗОВАНИЯ ПАРОВОДЯНЫХ СТРУЙНЫХ  АППАРАТОВ.


  P.S.

Мы стремимся предоставлять заказчикам максимальное количество информации для принятия решения. Потратив несколько минут на заполнение нашего бланка технического задания, Вы БЕСПЛАТНО получите технико-экономическое обоснование (ТЭО) внедрения ПСА на Вашем предприятии, содержащее полное коммерческое предложение с расчетом сроков окупаемости проекта, исполнительную и технологическую схемы, режимную карту работы ПСА, а также спецификацию на арматуру и КИПиА.

   Скачать техническое задание на теплообменник ПСА (в формате WORD)
Новости

Два компактных теплообменных аппарата ТОС(П)-02 поставлены в Казань. 

Компания из Москвы получила два наших кожухотрубных теплообменника ТОС(П)-04.

Два эжектора ЭУ-05 во фторопластовом исполнении поставлены в Уфу. ЭУ будут использоваться для приготовления раствора серной кислоты. 

Проектно-монтажная компания из Санкт-Петербурга забрала изготовленный для неё струйный вихревой декарбонизатор СВДК-07.

 

В столицу Казахстана Астану для системы деаэрации отправлены деаэратор СВД-07, эжектор ЭВВ-06, два теплообменника ТОС(П)-07 и блок управления

...

В Липецк выслан Пароводяной Струйный Аппарат ПСА-02, а также блок управления для системы деаэрации БУ-ДА-01. 

Московской компании доставлен наш кожухотрубный теплообменный аппарат ТОС(П)-06. 

Для доставки в Нижний Новгород транспортной компании переданы: деаэратор СВД-06, струйный теплообменник ПСА-06 и блок управления для системы

...

В Москву отправлен Пароводяной Струйный Аппарат ПСА-04.

Самый бюджетный вариант подогревателя - Устройство Разогрева Жидкости УРЖ-01 - передан представителю заказчика из Санкт-Петербурга. 

ТОС(П)-02 передан транспортной компании для отправки в Тюмень. 

Два теплообменника - струйный ПСА-07 и компактный кожухотрубный ТОС(П)-01 - отправлены соответственно в Нижний Новгород и Москву. 

Два фторопластовых эжектора ЭУ-Ф-05 и регулируемый Пароводяной Струйный Аппарат ПСА-Р-05 получены заказчиком из Иркутска. 

Эжектор ЭУ-Ф-06 во фторопластовом исполнении для приготовления раствора серной кислоты доставлен в Московскую область.

Компактный кожухотрубный теплообменный аппарат ТОС(П)-03 поставлен в Иваново. 

Струйный теплообменник ПСА-Р-10 с возможностью регулирования тепловой мощности отправлен в Красноярск. По сравнению с нерегулируемыми струйными

...

Эжектор ЭУ-04 в специальном исполнении передан заказчику из Санкт-Петербурга. 

ТОС(П)-08 с трубками специального профиля, обеспечивающими повышенную теплопередачу и эффект самоочистки, поставлен в Московскую область. 

Компании из Москвы переданы компактный деаэратор СВД-06 и эжектор ЭВВ-05. 

Два Пароводяных Струйных Аппарата ПСА-06 отправлены в Ростовскую область. 

Компактный кожухотрубный теплообменный аппарат ТОС(П)-02 поставлен в Красноярск. 

Уважаемые клиенты и потенциальные заказчики! 

В связи с профилактическими работами нашего интернет-провайдера 18-19 апреля возможны

...

В Ставрополь отправлен кожухотрубный теплообменник ТОС(П)-06 с профилированными трубками, обеспечивающими "эффект самоочистки" и максимальный

...

Декарбонизатор струйного типа СВДК-07 в комплекте с блоком управления БУ-ГВС-03 передан представителю проектной организации из

...

Ещё один эжектор ЭУ-09 для сжатия попутного нефтяного газа поставлен в Республику Башкортостан.

Наши клиенты
  • smp-almati.jpg
  • rosenergoatom.JPG
  • Zheleznogorsk_GHK.JPG
  • remik21.png
  • Irkutskenergotreid.jpg
  • omsk_hlebodar.jpg
  • eton.JPG
  • biohimik.JPG
  • Novomitchurinsk_TER1.png
  • mechel-energo.JPG
  • Novorossiysklesexport.JPG
  • Udmurtia.png
  • Sosnoviy_Bor_TSP1.JPG
  • Kaliningrad_tarniy_k-t.png
  • electrostal.JPG
  • vladivostok_pkk_mis.JPG
  • Rjazan 360 ARZ.jpg
  • ETI.png
  • Malojaroslavec_STM_plus.JPG
  • divnogorsk_rzzhbi.png
  • promexport-s.JPG
  • Krasnodar_gasprom_dobytcha.JPG
  • Barnaul_KMZ.png
  • mechel.jpg
  • sk_ubileyniy.JPG
  • ul'anovskcement.JPG
  • borovichi_z-d_sil_kirpicha.jpg
  • Kemerovo_Teploenergo.JPG
  • logo-dzo-inner.png
  • astr. zhelesobeton.JPG
  • vpes.JPG
  • Borovitchi_BKO.png
  • raskom1.JPG
  • Mozhaiskiy z-d ster.moloka.JPG
  • Dorogobuzhkotlomash.JPG
  • elevar.JPG
  • bryansk_mpnu_etm.JPG
  • Moskva_TES-DKM.JPG
  • arzamas_apz.JPG
  • Sibeko.jpg
  • Lod_Pole CSP-Svir.jpg
  • Sarapul_LVZ.JPG
  • Kaliningradteploset.JPG
  • alap_m_z.png
  • i.jpg
  • NAZ_Sokol.JPG
  • vladhleb.png
  • Vitebsk_MEZ.JPG
  • surgutneftegaz.jpg
  • sibur-chimprom.JPG
  • belgrankorm.JPG
  • Novgorod_Akron.png
  • topkivodokanal.jpg
  • VPychma_UGMK-AGRO.JPG
  • borisoglebsk_NM-ING.JPG
  • deka.JPG
  • Tchudovo_Mondeliz_Rus.jpg
  • budmar.jpg
  • izhmashenergo.JPG
  • minsk_filter.jpg
  • Petrozavodsk_SLAVMO.jpg
  • rubcovsk_stroytranzit1.jpg
  • novie_territoriy.JPG
  • voronezh_mk_voronezhskiy.JPG
  • Sarapul_mk-t_Vostotchniy.JPG
  • vyksa_moloko.jpg
  • NPO_Microgen.JPG
  • tcherkizovo1.JPG
  • SPB_GUP_TEK.png
  • sibur.png
  • Omsk_tepiovaya_kompaniya.JPG
  • P-f_Varaksino.png
  • atrus.jpg
  • kazan-bkk.png
  • stroytechmontazh.jpg
  • Borisoglebsk_ZNIGO.jpg
  • Petrozavodsk_SLAVMO.JPG
  • OGK-2.png
  • SPB_AANII1.jpg
  • fanagoria.png
  • Kirichi_biotechprogress.JPG
  • SPb_Vapor.JPG
  • Emva JKH.JPG
  • ajan.JPG
  • technopromexport.jpg
  • rostov_atrus.jpg
  • ptk_avangard.jpg
  • Kursk_RPI-KurskProm1.JPG
  • tumen_maxterm.jpg
  • SPb_mastertermgrupp.png
  • tambov_mpk_maximovskiy.jpg
  • kazan_stm-stroy.JPG
  • irkutskaja_tec-11.jpg
  • tcherepoveck_TZSK.jpg
  • image002.jpg
  • Balahna_Volga.jpg
  • nizhniy_novgorod_nmzhk.png
  • Yaroslavl_YGK.png
  • rosneft.png
  • detskoselsky2.JPG
  • SterlitamakNHZ.JPG
  • SPb_OEVRZ.JPG
  • Ul'yanovsk_ZHBI-4.JPG
  • NPO_Virion.JPG
  • gazprom_logo_140.png
  • ufa_gigas.jpg
  • Rybinsk teploenergo.png
  • glasov-moloko.png
  • altaivitaminy.png
  • raduzhninskiy_z-d_zhbi.jpg
  • Barnaul_Garant.JPG
  • Tomskneftechim.JPG
  • perm_gaskomplecttechnologiya.jpg
  • dimitrovgrad_gorteplo.png
  • SPB_61_BTRZ.jpg
  • mosinterm1.jpg
  • Izhevsk_TES.JPG
  • titan-poliom.JPG
  • sinyaviskaya pticefabrica1.png
  • vitebsk_irbis.JPG
  • juzuralnickel.jpg
  • Aktobe.png
  • Belebey_molk-t.jpg
  • bulgarpivo.png
  • krasnoturinsk_BSK.png
  • SarGaz.png
  • pereyaslavsky_mol_z-d.png
  • donenergo.png
  • Nevinnomyssk_Azot.JPG
  • ymkk2.jpg
  • udmur PF.JPG
  • Salavat_SNHRS.jpg